Skip to Content
MilliporeSigma
  • Elucidation of differences in N-glycosylation between different molecular weight forms of recombinant CLEC-2 by LC MALDI tandem MS.

Elucidation of differences in N-glycosylation between different molecular weight forms of recombinant CLEC-2 by LC MALDI tandem MS.

Carbohydrate research (2014-12-17)
Lei Zhou, Yifan Qian, Xingwang Zhang, Yuanyuan Ruan, Shifang Ren, Jianxin Gu
ABSTRACT

C-type lectin-like receptor 2 (CLEC-2) is a newly identified receptor expressed on the platelet surface. It has been reported that CLEC-2 exists as a higher molecular weight (HMW) and a lower molecular weight (LMW) form, which share the same protein core but differ in glycans. The two forms appear to have different ligand-binding abilities, indicating that the differential glycosylation of CLEC-2 possibly produces functionally distinct glycoforms. This study aimed to explore an easy method to directly elucidate the N-glycosylation difference by employing a glycoproteomics approach. The off-line coupling of nano-LC with a MALDI-QIT-TOF mass spectrometer was demonstrated to be capable of sensitive and direct elucidation of the glycosylation difference between HMW and LMW CLEC-2, simultaneously providing information about their oligosaccharide structures and the glycosylation sites. The results reveal that a specific glycosylation site, Asn 134, is differently glycosylated in the two forms, with complex types of bi-antennary, tri-antennary and tetra-antennary, N-linked, fucosylated glycans identified at this site in the HMW form but not in the LMW form. The observed difference in glycosylation might provide new insights into the underlying mechanisms of biological functions of CLEC-2. Because of its simplicity and sensitivity, the method explored in this work suggests that it holds promise as a method of elucidating differences in direct N-glycosylation of target glycoprotein, even in small amount of samples.

MATERIALS
Product Number
Brand
Product Description

Supelco
2,5-Dihydroxybenzoic acid, suitable for matrix substance for MALDI-MS, ≥99.5% (HPLC), Ultra pure
Supelco
2,5-Dihydroxybenzoic acid, suitable for matrix substance for MALDI-MS, >99.0% (HPLC)
Sigma-Aldrich
2,5-Dihydroxybenzoic acid, 98%
Supelco
2,5-Dihydroxybenzoic acid, analytical standard
USP
Residual Solvent Class 2 - Acetonitrile, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Iodoacetamide, ≥99% (NMR), crystalline
Sigma-Aldrich
Acetonitrile, ≥99.8%, suitable for HPLC
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%, poly-coated bottles
Sigma-Aldrich
Trifluoroacetic acid, SAJ special grade, ≥99.0%
Sigma-Aldrich
Acetonitrile, JIS special grade, ≥99.5%
Sigma-Aldrich
Acetonitrile, ≥99.8%, suitable for residue analysis, JIS 300
Sigma-Aldrich
Acetonitrile, SAJ first grade, ≥99.0%
Sigma-Aldrich
Acetonitrile, ≥99.8%, suitable for residue analysis, JIS 1000
Sigma-Aldrich
Acetonitrile, suitable for residue analysis, JIS 5000
Sigma-Aldrich
Acetonitrile, suitable for chromatography
Sigma-Aldrich
Iodoacetamide, BioUltra
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Supelco
Trifluoroacetic acid, analytical standard
Supelco
Acetonitrile, HPLC grade, ≥99.93%
Sigma-Aldrich
Iodoacetamide, Single use vial of 56 mg
Sigma-Aldrich
Acetonitrile, ≥99.5%, ACS reagent
SAFC
Iodoacetamide
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Acetonitrile, suitable for DNA synthesis, ≥99.9% (GC)
Sigma-Aldrich
Trifluoroacetic acid, puriss. p.a., suitable for HPLC, ≥99.0% (GC)
Sigma-Aldrich
Acetonitrile, ReagentPlus®, 99%
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Acetonitrile, suitable for HPLC-GC, ≥99.8% (GC)
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%
Sigma-Aldrich
Trifluoroacetic acid, suitable for HPLC, ≥99.0%