Photocatalysis

Photoreactor in organic synthesis lab for photoredox catalysis.

Photoredox catalysis, or so-called visible light photoredox catalysis, has emerged as a powerful tool in organic synthesis, building upon the foundation set by early pioneers in the areas of radical chemistry and photochemistry. Photoredox chemistry forges new bonds via open shell pathways and facilitates the rapid assembly of complex products en route to new areas of chemical space.1-7 In the presence of visible light, photocatalysts can provide access to entirely new, previously inaccessible bond formations through a wide array of synthetic transformations including but not limited to cross-coupling, C–H Functionalization, alkene and arene functionalization, and trifluoromethylation.

The powerful nature of photocatalysis arises, in part, from the ability to activate readily accessible, simple starting materials via single electron transfer pathways to provide access to reactive open shell species under mild reaction conditions. Upon formation, these distinct open shell species can be engaged in a wide variety of radical trapping/quenching events to ultimately deliver high-value products.

Photocatalysis has been successfully employed by academic research groups, industrial chemists, and academic-industrial collaborations. These efforts have produced innovative methods, new synthetic disconnections, and have improved mechanistic understanding of photoredox pathways. For further details on photoredox catalysis, a helpful user’s guide has been created. User's Guide


Related Technical Articles

Related Protocols






References

1.
Prier CK, Rankic DA, MacMillan DWC. 2013. Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis. Chem. Rev.. 113(7):5322-5363. http://dx.doi.org/10.1021/cr300503r
2.
Fukuzumi S, Ohkubo K. Organic synthetic transformations using organic dyes as photoredox catalysts. Org. Biomol. Chem.. 12(32):6059-6071. http://dx.doi.org/10.1039/c4ob00843j
3.
Shaw MH, Twilton J, MacMillan DWC. 2016. Photoredox Catalysis in Organic Chemistry. J. Org. Chem.. 81(16):6898-6926. http://dx.doi.org/10.1021/acs.joc.6b01449
4.
Romero NA, Nicewicz DA. 2016. Organic Photoredox Catalysis. Chem. Rev.. 116(17):10075-10166. http://dx.doi.org/10.1021/acs.chemrev.6b00057
5.
Skubi KL, Blum TR, Yoon TP. 2016. Dual Catalysis Strategies in Photochemical Synthesis. Chem. Rev.. 116(17):10035-10074. http://dx.doi.org/10.1021/acs.chemrev.6b00018
6.
Poplata S, Tröster A, Zou Y, Bach T. 2016. Recent Advances in the Synthesis of Cyclobutanes by Olefin [2+2] Photocycloaddition Reactions. Chem. Rev.. 116(17):9748-9815. http://dx.doi.org/10.1021/acs.chemrev.5b00723
7.
Kärkäs MD, Porco JA, Stephenson CRJ. 2016. Photochemical Approaches to Complex Chemotypes: Applications in Natural Product Synthesis. Chem. Rev.. 116(17):9683-9747. http://dx.doi.org/10.1021/acs.chemrev.5b00760

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon

MilliporeSigma

Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.