• Home
  • Search Results
  • [The prevention of the development of the collagen-induced microembolic syndrome by decreasing the hydrodynamic resistance of the blood with special polymers under flow].

[The prevention of the development of the collagen-induced microembolic syndrome by decreasing the hydrodynamic resistance of the blood with special polymers under flow].

Patologicheskaia fiziologiia i eksperimental'naia terapiia (1991-07-01)
I L Konorova, S E Akopov, E S Gabrielian, I V Gannushkina
ABSTRACT

The search for antiaggregatory compounds is undertaken, as a rule, under in vitro conditions which do not reflect the dynamics of the real process. The present work deals with study of the peculiarities of the development of the collagen induced microembolic syndrome and the effect produced on it by hydrodynamic resistance reducing polymers under conditions modelling real circulation. The authors show the formation of a developed microembolic syndrome under the effect of collagen with accumulation of vasoconstrictors in the environment and increase of red cell hemolysis. Reduction of blood flow turbulence by the addition of solutions of neutral high-molecular linear polymers revealed the inhibiting effect of these polymers on the development of intracellular aggregate formation and concomitant red cell microhemolysis, which was attended by sharp reduction of thromboxane A2 production in the experiment. The authors show the significance of hemodynamic conditions in the development of the microembolic syndrome and the possibility of preventing it under conditions of modification of the blood flow with polymers, which may be of high prophylactic importance.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Poly(ethylene glycol), BioUltra, 8,000
Sigma-Aldrich
Poly(ethylene glycol), average Mn 400
Sigma-Aldrich
Poly(ethylene glycol), for molecular biology, average mol wt 8,000
Sigma-Aldrich
Poly(ethylene glycol), average Mn 6,000
Sigma-Aldrich
Poly(ethylene glycol), average Mn 3,350, powder
Sigma-Aldrich
Poly(ethylene glycol), average mol wt 200
Sigma-Aldrich
Poly(ethylene oxide), average Mv 100,000, powder
Sigma-Aldrich
Poly(ethylene glycol), average mol wt 8,000, powder
Sigma-Aldrich
Poly(ethylene glycol), BioXtra, average mol wt 3,350, powder
Sigma-Aldrich
Poly(ethylene glycol), BioUltra, 4,000
Sigma-Aldrich
Poly(ethylene glycol), tested according to Ph. Eur., 6,000
Sigma-Aldrich
Poly(ethylene glycol), average Mn 20,000
Sigma-Aldrich
Poly(ethylene oxide), average Mv 600,000, powder
Sigma-Aldrich
Poly(ethylene glycol), BioUltra, 400
Sigma-Aldrich
Poly(ethylene glycol), BioUltra, for molecular biology, 8,000
Sigma-Aldrich
Poly(ethylene glycol), BioUltra, 2,000
Sigma-Aldrich
Kollisolv® PEG E 400
Sigma-Aldrich
Polyethylene glycol solution, Hybri-Max, 50 % (w/v), average mol wt 1,450, sterile-filtered, BioReagent, suitable for hybridoma
Sigma-Aldrich
Polyethylene glycol solution, 40 % (w/w) in H2O, average mol wt 8,000
Sigma-Aldrich
Poly(ethylene glycol), average Mn 300
Sigma-Aldrich
Poly(ethylene glycol), BioUltra, for molecular biology, 6,000
Sigma-Aldrich
Poly(ethylene glycol), average Mn 4,000, platelets
Sigma-Aldrich
Poly(ethylene glycol), 35,000
Sigma-Aldrich
Poly(ethylene glycol), BioUltra, 20,000
Sigma-Aldrich
Poly(ethylene glycol), BioUltra, 6,000
Sigma-Aldrich
Poly(ethylene glycol), tested according to Ph. Eur., 400
Sigma-Aldrich
Poly(ethylene oxide), average Mv ~1,000,000, powder
Sigma-Aldrich
Poly(ethylene glycol), BioUltra, 3,350
Sigma-Aldrich
Poly(ethylene glycol), average mol wt 400
Sigma-Aldrich
Poly(ethylene glycol), average Mn 600, waxy solid (moist)

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon

MilliporeSigma

Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.