Multistep energy transfer in single molecular photonic wires.

Journal of the American Chemical Society (2004-05-27)
Mike Heilemann, Philip Tinnefeld, Gabriel Sanchez Mosteiro, Maria Garcia Parajo, Niek F Van Hulst, Markus Sauer
ABSTRACT

We demonstrate the synthesis and spectroscopic characterization of an unidirectional photonic wire based on four highly efficient fluorescence energy-transfer steps (FRET) between five spectrally different chromophores covalently attached to double-stranded DNA. The DNA-based modular conception enables the introduction of various chromophores at well-defined positions and arbitrary interchromophore distances. While ensemble fluorescence measurements show overall FRET efficiencies between 15 and 30%, single-molecule spectroscopy performed on four spectrally separated detectors easily uncovers subpopulations that exhibit overall FRET efficiencies of up to approximately 90% across a distance of 13.6 nm and a spectral range of approximately 200 nm. Fluorescence trajectories of individual photonic wires show five different fluorescence intensity patterns which can be ascribed to successive photobleaching events.

MATERIALS
Product Number
Brand
Product Description

Supelco
Atto 590 NHS ester, BioReagent, suitable for fluorescence, ≥60% (coupling to amines)
Sigma-Aldrich
Atto 680, BioReagent, suitable for fluorescence, ≥90% (HPLC)
Sigma-Aldrich
Atto 680 NHS ester, BioReagent, suitable for fluorescence, ≥90.0% (coupling to amines)
Sigma-Aldrich
Atto 680 maleimide, BioReagent, suitable for fluorescence, ≥90% (HPCE)

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon

MilliporeSigma

Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.