Przejdź do zawartości
Merck

A phosphorylation-sensitive tyrosine-tailored magnetic particle for electrochemically probing free organophosphates in blood.

The Analyst (2014-09-02)
Yanmei Si, Ning Zhang, Zongzhao Sun, Shuai Li, Liyang Zhao, Rui Li, Hua Wang
ABSTRAKT

A simple, rapid, sensitive, selective, and field-deployable detection protocol has been initially proposed for the early warning and diagnosis of exposure to organophosphates (OPs) by electrochemically monitoring the direct biomarkers of free OPs in blood. Phosphorylation-sensitive tyrosine (Tyr), which was tested with unique electroactivity, was bound onto Fe3O4 particles mediated by the mussel-inspired dopamine to form Fe3O4@Tyr particles with well-defined shape and well-retained Tyr electroactivities, as characterized separately by electron microscopy and electrochemical measurements. A "lab-on-a-particle"-based detection procedure combined with a magnetic electrode was thus developed by employing Fe3O4@Tyr particles as capturing probes for detecting free OPs in blood, dimethyl-dichloro-vinyl phosphate (DDVP) as an example. A significant difference in electrochemical responses could be obtained for Fe3O4@Tyr particles before and after DDVP exposure, based on the phosphorylation-induced inhibition of electroactivities of loaded Tyr. Investigation results indicate that highly specific and sensitive phosphorylation for the inhibition of Tyr electroactivities by sensitive electrochemical outputs could endow the OP detection with high selectivity and sensitivity (i.e., down to about 0.16 nM DDVP in blood). Moreover, strong and stable Tyr-OP bindings especially irreversible electrochemical oxidization of the Tyr probe could facilitate the OP evaluation with high reproducibility and stability over time. In particular, the simple "lab-on-a-particle"-based detection procedure equipped with a portable electrochemical transducer can be tailored for the field-deployable or on-site monitoring of the exposure to various nerve agents and pesticides.

MATERIAŁY
Numer produktu
Marka
Opis produktu

Supelco
Glycine, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
L-Threonine, Pharmaceutical Secondary Standard; Certified Reference Material
Aspartic acid, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Glycine, BioUltra, Molecular Biology, ≥99.0% (NT)
Sigma-Aldrich
L-Ascorbic acid, tested according to Ph. Eur.
Sigma-Aldrich
L-Ascorbic acid, BioUltra, ≥99.5% (RT)
Sigma-Aldrich
Glycine, tested according to Ph. Eur.
Sigma-Aldrich
Glycine, puriss. p.a., reag. Ph. Eur., buffer substance, 99.7-101% (calc. to the dried substance)
Sigma-Aldrich
Glycine, meets analytical specification of Ph. Eur., BP, USP, 99-101% (based on anhydrous substance)
Sigma-Aldrich
Glycine, 99%, FCC
Sigma-Aldrich
L-Threonine, BioXtra, ≥99.5% (NT)
Sigma-Aldrich
L-Ascorbic acid, puriss. p.a., ACS reagent, reag. ISO, Ph. Eur., 99.7-100.5% (oxidimetric)
Sigma-Aldrich
L-Ascorbic acid, 99%
Sigma-Aldrich
L-Ascorbic acid, reagent grade, crystalline
Sigma-Aldrich
L-Ascorbic acid, powder, suitable for cell culture, γ-irradiated
Sigma-Aldrich
L-Ascorbic acid, reagent grade
Sigma-Aldrich
L-Ascorbic acid, suitable for cell culture, suitable for plant cell culture, ≥98%
Sigma-Aldrich
L-Ascorbic acid, meets USP testing specifications
Sigma-Aldrich
Glycine, suitable for electrophoresis, ≥99%
Sigma-Aldrich
Glycine, BioXtra, ≥99% (titration)
Sigma-Aldrich
Glycine, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
L-Threonine, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, 99.0-101.0%
Sigma-Aldrich
L-Threonine, reagent grade, ≥98% (HPLC)
Sigma-Aldrich
L-Ascorbic acid, BioXtra, ≥99.0%, crystalline
Sigma-Aldrich
L-Ascorbic acid, ACS reagent, ≥99%
SAFC
Glycine
SAFC
L-Threonine
Supelco
Glycine, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Sigma-Aldrich
Glycine, ACS reagent, ≥98.5%
Sigma-Aldrich
DL-Aspartic acid, ≥99% (TLC)