Przejdź do zawartości
Merck

Delivery of therapeutic protein for prevention of neurodegenerative changes: comparison of different CSF-delivery methods.

Experimental neurology (2014-09-24)
Neil R Marshall, Sofia Hassiotis, Barbara King, Tina Rozaklis, Paul J Trim, Stephen K Duplock, Leanne K Winner, Helen Beard, Marten F Snel, Robert D Jolly, John J Hopwood, Kim M Hemsley
ABSTRAKT

Injection of lysosomal enzyme into cisternal or ventricular cerebrospinal fluid (CSF) has been carried out in 11 lysosomal storage disorder models, with each study demonstrating reductions in primary substrate and secondary neuropathological changes, and several reports of improved neurological function. Whilst acute studies in mucopolysaccharidosis (MPS) type II mice revealed that intrathecally-delivered enzyme (into thoraco-lumbar CSF) accesses the brain, the impact of longer-term treatment of affected subjects via this route is unknown. This approach is presently being utilized to treat children with MPS types I, II and III. Our aim was to determine the efficacy of repeated intrathecal injection of recombinant human sulfamidase (rhSGSH) on pathological changes in the MPS IIIA dog brain. The outcomes were compared with those in dogs treated via intra-cisternal or ventricular routes. Control dogs received buffer or no treatment. Significant reductions in primary/secondary substrate levels in brain were observed in dogs treated via all routes, although the extent of the reduction differed regionally. Treatment via all CSF access points resulted in large reductions in microgliosis in superficial cerebral cortex, but only ventricular injection enabled amelioration in deep cerebral cortex. Formation of glutamic acid decarboxylase-positive axonal spheroids in deep cerebellar nuclei was prevented by treatment delivered via any route. Anti-rhSGSH antibodies in the sera of some dogs did not reduce therapeutic efficacy. Our data indicates the capacity of intra-spinal CSF-injected rhSGSH to circulate within CSF-filled spaces, penetrate into brain and mediate a significant reduction in substrate accumulation and secondary pathology in the MPS IIIA dog brain.

MATERIAŁY
Numer produktu
Marka
Opis produktu

Sigma-Aldrich
Acetonitrile, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
Formic acid solution, BioUltra, 1.0 M in H2O
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
Sodium phosphate, 96%
Sigma-Aldrich
Formic acid, ≥95%, FCC, FG
Supelco
Acetonitrile, analytical standard
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Formic acid, ACS reagent, ≥96%
Sigma-Aldrich
Acetonitrile, suitable for DNA synthesis, ≥99.9% (GC)
Supelco
Carprofen, VETRANAL®, analytical standard
Carprofen, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%
Supelco
Carprofen, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Formic acid, reagent grade, ≥95%
Sigma-Aldrich
Acetonitrile, ReagentPlus®, 99%
Sigma-Aldrich
Acetonitrile, ACS reagent, ≥99.5%
Sigma-Aldrich
Formic acid, ACS reagent, ≥88%
Sigma-Aldrich
Acetonitrile, biotech. grade, ≥99.93%
USP
Rozpuszczalnik resztkowy klasy 2 - acetonitryl, United States Pharmacopeia (USP) Reference Standard
USP
Alkohol metylowy, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Methanol, suitable for NMR (reference standard)
Sigma-Aldrich
Hydrogen chloride solution, 3 M in cyclopentyl methyl ether (CPME)
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride, random crystals, 99.9% trace metals basis
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Sodium chloride solution, 0.85%
Supelco
Hydrogen chloride – ethanol, ~1.25 M HCl, derivatization grade (GC derivatization), LiChropur
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
2,2-Dimethoxypropane, reagent grade, 98%