Przejdź do zawartości
Merck

Do not drop: mechanical shock in vials causes cavitation, protein aggregation, and particle formation.

Journal of pharmaceutical sciences (2014-11-25)
Theodore W Randolph, Elise Schiltz, Donn Sederstrom, Daniel Steinmann, Olivier Mozziconacci, Christian Schöneich, Erwin Freund, Margaret S Ricci, John F Carpenter, Corrine S Lengsfeld
ABSTRAKT

Industry experience suggests that g-forces sustained when vials containing protein formulations are accidentally dropped can cause aggregation and particle formation. To study this phenomenon, a shock tower was used to apply controlled g-forces to glass vials containing formulations of two monoclonal antibodies and recombinant human growth hormone (rhGH). High-speed video analysis showed cavitation bubbles forming within 30 μs and subsequently collapsing in the formulations. As a result of echoing shock waves, bubbles collapsed and reappeared periodically over a millisecond time course. Fluid mechanics simulations showed low-pressure regions within the fluid where cavitation would be favored. A hydroxyphenylfluorescein assay determined that cavitation produced hydroxyl radicals. When mechanical shock was applied to vials containing protein formulations, gelatinous particles appeared on the vial walls. Size-exclusion chromatographic analysis of the formulations after shock did not detect changes in monomer or soluble aggregate concentrations. However, subvisible particle counts determined by microflow image analysis increased. The mass of protein attached to the vial walls increased with increasing drop height. Both protein in bulk solution and protein that became attached to the vial walls after shock were analyzed by mass spectrometry. rhGH recovered from the vial walls in some samples revealed oxidation of Met and/or Trp residues.

MATERIAŁY
Numer produktu
Marka
Opis produktu

Millipore
Urea solution, suitable for microbiology, 40% in H2O
Supelco
Acetonitrile(Neat), Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
DL-Dithiothreitol solution, BioUltra, Molecular Biology, ~1 M in H2O
Sigma-Aldrich
Urea-12C, 99.9 atom % 12C
Sigma-Aldrich
Urea solution, 40 % (w/v) in H2O
Sigma-Aldrich
Urea solution, BioUltra, ~8 M in H2O
Supelco
DL-Dithiothreitol solution, 1 M in H2O
Supelco
Residual Solvent - Acetonitrile(solution in DMSO), Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Urea, meets USP testing specifications
Sigma-Aldrich
Urea, suitable for electrophoresis
Sigma-Aldrich
Urea, BioXtra, pH 7.5-9.5 (20 °C, 5 M in H2O)
Sigma-Aldrich
Urea, powder, BioReagent, Molecular Biology, suitable for cell culture
Sigma-Aldrich
Urea, ACS reagent, 99.0-100.5%
Sigma-Aldrich
Urea, puriss., meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%, 99.0-101.0% (calc. on dry substance)
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
Urea, BioUltra, Molecular Biology, 99% (T)
Sigma-Aldrich
Urea, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99%
Supelco
Urea, 8 M (after reconstitution with 16 mL high purity water)
Supelco
Acetonitrile, analytical standard
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Urea, ReagentPlus®, ≥99.5%, pellets
Sigma-Aldrich
Acetonitrile, suitable for DNA synthesis, ≥99.9% (GC)
Urea, European Pharmacopoeia (EP) Reference Standard
USP
Urea, United States Pharmacopeia (USP) Reference Standard
Supelco
Urea, analytical standard
USP
Rozpuszczalnik resztkowy klasy 2 - acetonitryl, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Acetonitrile, ReagentPlus®, 99%
Sigma-Aldrich
Acetonitrile, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetonitrile, biotech. grade, ≥99.93%
Sigma-Aldrich
Acetonitrile, electronic grade, 99.999% trace metals basis