Przejdź do zawartości
Merck

Reconstruction of the carnitine biosynthesis pathway from Neurospora crassa in the yeast Saccharomyces cerevisiae.

Applied microbiology and biotechnology (2015-04-09)
Jaco Franken, Anita Burger, Jan H Swiegers, Florian F Bauer
ABSTRAKT

Industrial synthesis of L-carnitine is currently performed by whole-cell biotransformation of industrial waste products, mostly D-carnitine and cronobetaine, through specific bacterial species. No comparable system has been established using eukaryotic microorganisms, even though there is a significant and growing international demand for either the pure compound or carnitine-enriched consumables. In eukaryotes, including the fungus Neurospora crassa, L-carnitine is biosynthesized through a four-step metabolic conversion of trimethyllysine to L-carnitine. In contrast, the industrial yeast, Saccharomyces cerevisiae lacks the enzymes of the eukaryotic biosynthesis pathway and is unable to synthesize carnitine. This study describes the cloning of all four of the N. crassa carnitine biosynthesis genes and the reconstruction of the entire pathway in S. cerevisiae. The engineered yeast strains were able to catalyze the synthesis of L-carnitine, which was quantified using hydrophilic interaction liquid chromatography electrospray ionization mass spectrometry (HILIC-ESI-MS) analyses, from trimethyllysine. Furthermore, the yeast threonine aldolase Gly1p was shown to effectively catalyze the second step of the pathway, fulfilling the role of a serine hydroxymethyltransferase. The analyses also identified yeast enzymes that interact with the introduced pathway, including Can1p, which was identified as the yeast transporter for trimethyllysine, and the two yeast serine hydroxymethyltransferases, Shm1p and Shm2p. Together, this study opens the possibility of using an engineered, carnitine-producing yeast in various industrial applications while providing insight into possible future strategies aimed at tailoring the production capacity of such strains.

MATERIAŁY
Numer produktu
Marka
Opis produktu

Sigma-Aldrich
Sodium phosphate dibasic solution, BioUltra, 0.5 M in H2O
Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
D-Glucose-12C6, 16O6, 99.9 atom % 16O, 99.9 atom % 12C
SAFC
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium azide, purum p.a., ≥99.0% (T)
Sigma-Aldrich
Sodium azide, BioUltra, ≥99.5% (T)
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
3-Mercaptopropionic acid, ≥99%
Sigma-Aldrich
Sodium chloride, random crystals, 99.9% trace metals basis
Sigma-Aldrich
Boric acid-11B, ≥99 atom % 11B
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, Molecular Biology, suitable for cell culture
Sigma-Aldrich
Sodium azide, BioXtra
Sigma-Aldrich
Sodium azide, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium chloride, Molecular Biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Sodium chloride, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
D-(+)-Glucose, Hybri-Max, powder, BioReagent, suitable for hybridoma
Sigma-Aldrich
D-(+)-Glucose, ≥99.5% (GC)
Sigma-Aldrich
D-(+)-Glucose, suitable for mouse embryo cell culture, ≥99.5% (GC)
Sigma-Aldrich
D-(+)-Glucose, ACS reagent
Sigma-Aldrich
Sodium chloride, tablet
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
D-(+)-Glucose, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.5%
Sigma-Aldrich
Sodium chloride, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
D-(+)-Glucose, BioUltra, anhydrous, ≥99.5% (sum of enantiomers, HPLC)
Sigma-Aldrich
3-Mercaptopropionic acid, ≥99.0% (HPLC)
Sigma-Aldrich
Sodium chloride, BioUltra, Molecular Biology, ≥99.5% (AT)