Skip to Content
MilliporeSigma
  • Mitochondrial transcription factor A (Tfam) is a pro-inflammatory extracellular signaling molecule recognized by brain microglia.

Mitochondrial transcription factor A (Tfam) is a pro-inflammatory extracellular signaling molecule recognized by brain microglia.

Molecular and cellular neurosciences (2014-04-29)
Jonathan P Little, Svetlana Simtchouk, Stephanie M Schindler, Erika B Villanueva, Nichole E Gill, Douglas G Walker, Kirsten R Wolthers, Andis Klegeris
ABSTRACT

Microglia represent mononuclear phagocytes in the brain and perform immune surveillance, recognizing a number of signaling molecules released from surrounding cells in both healthy and pathological situations. The microglia interact with several damage-associated molecular pattern molecules (DAMPs) and recent data indicate that mitochondrial transcription factor A (Tfam) could act as a specific DAMP in peripheral tissues. This study tested the hypothesis that extracellular Tfam induces pro-inflammatory and cytotoxic responses of the microglia. Three different types of human mononuclear phagocytes were used to model human microglia: human peripheral blood monocytes from healthy donors, human THP-1 monocytic cells, and human primary microglia obtained from autopsy samples. When combined with interferon (IFN)-γ, recombinant human Tfam (rhTfam) induced secretions that were toxic to human SH-SY5Y neuroblastoma cells in all three models. Similar cytotoxic responses were observed when THP-1 cells and human microglia were exposed to human mitochondrial proteins in the presence of IFN-γ. rhTfam alone induced expression of pro-inflammatory cytokines interleukin (IL)-1β, IL-6 and IL-8 by THP-1 cells. This induction was further enhanced in the presence of IFN-γ. Upregulated secretion of IL-6 in response to rhTfam plus IFN-γ was confirmed in primary human microglia. Use of specific inhibitors showed that the rhTfam-induced cytotoxicity of human THP-1 cells depended partially on activation of c-Jun N-terminal kinase (JNK), but not p38 mitogen-activated protein kinase (MAPK). Overall, our data support the hypothesis that, in the human brain, Tfam could act as an intercellular signaling molecule that is recognized by the microglia to cause pro-inflammatory and cytotoxic responses.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Mouse IL-28A/B ELISA, for serum, plasma and cell culture supernatant
Sigma-Aldrich
Mouse IL-12 P40/70 ELISA Kit, for serum, plasma and cell culture supernatant
Supelco
Glutathione, Pharmaceutical Secondary Standard; Certified Reference Material
Glutathione, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Sucrose, SAJ first grade
Sigma-Aldrich
Sucrose, JIS special grade
Sigma-Aldrich
Ethylenediaminetetraacetic acid, SAJ special grade, ≥99.0%
USP
Sucrose, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Nitrogen, ≥99.998%
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ≥98.0% (KT)
Sigma-Aldrich
Sucrose, puriss., meets analytical specification of Ph. Eur., BP, NF
Sigma-Aldrich
Ethylenediaminetetraacetic acid, BioUltra, ≥99.0% (KT)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis
Sigma-Aldrich
Ethylenediaminetetraacetic acid disodium salt solution, BioUltra, pH 8.0, ~0.5 M in H2O
Sigma-Aldrich
Sucrose, BioUltra, Molecular Biology, ≥99.5% (HPLC)
Millipore
Sucrose, ACS reagent, suitable for microbiology, ≥99.0%
Sigma-Aldrich
Sucrose, ≥99.5% (GC), BioReagent, suitable for cell culture, suitable for insect cell culture
Supelco
Sucrose, analytical standard, for enzymatic assay kit SCA20
Sigma-Aldrich
Sucrose, ≥99.5% (GC), Grade II, suitable for plant cell culture
Sigma-Aldrich
Sucrose, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, ≥99.5% (GC), BioXtra
Sigma-Aldrich
Sucrose, ACS reagent
Sigma-Aldrich
Sucrose, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, Molecular Biology, ≥99.5% (GC)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, purified grade, ≥98.5%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, BioUltra, anhydrous, ≥99% (titration)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
Sucrose, meets USP testing specifications
Sigma-Aldrich
Sucrose, ≥99% (GC), Grade I, suitable for plant cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture