MilliporeSigma
  • Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression.

Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression.

Nature (2009-02-13)
Arun Sreekumar, Laila M Poisson, Thekkelnaycke M Rajendiran, Amjad P Khan, Qi Cao, Jindan Yu, Bharathi Laxman, Rohit Mehra, Robert J Lonigro, Yong Li, Mukesh K Nyati, Aarif Ahsan, Shanker Kalyana-Sundaram, Bo Han, Xuhong Cao, Jaeman Byun, Gilbert S Omenn, Debashis Ghosh, Subramaniam Pennathur, Danny C Alexander, Alvin Berger, Jeffrey R Shuster, John T Wei, Sooryanarayana Varambally, Christopher Beecher, Arul M Chinnaiyan
ABSTRACT

Multiple, complex molecular events characterize cancer development and progression. Deciphering the molecular networks that distinguish organ-confined disease from metastatic disease may lead to the identification of critical biomarkers for cancer invasion and disease aggressiveness. Although gene and protein expression have been extensively profiled in human tumours, little is known about the global metabolomic alterations that characterize neoplastic progression. Using a combination of high-throughput liquid-and-gas-chromatography-based mass spectrometry, we profiled more than 1,126 metabolites across 262 clinical samples related to prostate cancer (42 tissues and 110 each of urine and plasma). These unbiased metabolomic profiles were able to distinguish benign prostate, clinically localized prostate cancer and metastatic disease. Sarcosine, an N-methyl derivative of the amino acid glycine, was identified as a differential metabolite that was highly increased during prostate cancer progression to metastasis and can be detected non-invasively in urine. Sarcosine levels were also increased in invasive prostate cancer cell lines relative to benign prostate epithelial cells. Knockdown of glycine-N-methyl transferase, the enzyme that generates sarcosine from glycine, attenuated prostate cancer invasion. Addition of exogenous sarcosine or knockdown of the enzyme that leads to sarcosine degradation, sarcosine dehydrogenase, induced an invasive phenotype in benign prostate epithelial cells. Androgen receptor and the ERG gene fusion product coordinately regulate components of the sarcosine pathway. Here, by profiling the metabolomic alterations of prostate cancer progression, we reveal sarcosine as a potentially important metabolic intermediary of cancer cell invasion and aggressivity.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Biotin, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Citric acid, anhydrous, suitable for cell culture, suitable for plant cell culture
Sigma-Aldrich
Urea, ACS reagent, 99.0-100.5%
Sigma-Aldrich
Citric acid, 99%
Sigma-Aldrich
Urea, meets USP testing specifications
Sigma-Aldrich
DL-2-Aminoadipic acid, ≥99%
Sigma-Aldrich
Urea, ReagentPlus®, ≥99.5%, pellets
Sigma-Aldrich
Urea, powder, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Oleic acid, suitable for cell culture, BioReagent
Sigma-Aldrich
Biotin, meets USP testing specifications
Sigma-Aldrich
Oleic acid, ≥99% (GC)
Sigma-Aldrich
DL-3,4-Dihydroxyphenyl glycol
Sigma-Aldrich
Dihydrouracil
Sigma-Aldrich
meso-Erythritol, ≥99%
Sigma-Aldrich
Betaine, ≥98% (perchloric acid titration)
Sigma-Aldrich
Glycerol, ≥99.5%
Sigma-Aldrich
Heptadecanoic acid, ≥98%
Sigma-Aldrich
Shikimic acid, ≥99%
Sigma-Aldrich
Niacinamide, meets USP testing specifications
Sigma-Aldrich
Nicotinamide, ≥98% (HPLC), powder
Sigma-Aldrich
Succinic acid, BioXtra, BioRenewable, ≥99.0%
Sigma-Aldrich
L-Glutamine, γ-irradiated, BioXtra, suitable for cell culture
Sigma-Aldrich
L-Glutamine, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
Nicotinamide, BioReagent, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
D-(+)-Gluconic acid δ-lactone, ≥99.0%
Sigma-Aldrich
L-Glutamic acid, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
Succinic acid, ReagentPlus®, BioRenewable, ≥99.0%
Sigma-Aldrich
L-Glutamine, meets USP testing specifications, suitable for cell culture, 99.0-101.0%, from non-animal source
Sigma-Aldrich
L-Glutamic acid, from non-animal source, meets EP testing specifications, suitable for cell culture, 98.5-100.5%
Sigma-Aldrich
Gluconolactone, meets USP testing specifications