Przejdź do zawartości
Merck

Intrinsic carnosine metabolism in the human kidney.

Amino acids (2015-07-25)
Verena Peters, Celine Q F Klessens, Hans J Baelde, Benjamin Singler, Kimberley A M Veraar, Ana Zutinic, Jakub Drozak, Johannes Zschocke, Claus P Schmitt, Emile de Heer
ABSTRAKT

Histidine-containing dipeptides like carnosine and anserine have protective functions in both health and disease. Animal studies suggest that carnosine can be metabolized within the kidney. The goal of this study was to obtain evidence of carnosine metabolism in the human kidney and to provide insight with regards to diabetic nephropathy. Expression, distribution, and localization of carnosinase-1 (CNDP1), carnosine synthase (CARNS), and taurine transporters (TauT) were measured in human kidneys. CNDP1 and CARNS activities were measured in vitro. CNDP1 and CARNS were located primarily in distal and proximal tubules, respectively. Specifically, CNDP1 levels were high in tubular cells and podocytes (20.3 ± 3.4 and 15 ± 3.2 ng/mg, respectively) and considerably lower in endothelial cells (0.5 ± 0.1 ng/mg). CNDP1 expression was correlated with the degradation of carnosine and anserine (r = 0.88 and 0.81, respectively). Anserine and carnosine were also detectable by HPLC in the renal cortex. Finally, TauT mRNA and protein were found in all renal epithelial cells. In diabetic patients, CNDP1 seemed to be reallocated to proximal tubules. We report compelling evidence that the kidney has an intrinsic capacity to metabolize carnosine. Both CNDP1 and CARNS are expressed in glomeruli and tubular cells. Carnosine-synthesizing and carnosine-hydrolyzing enzymes are localized in distinct compartments in the nephron and increased CNDP1 levels suggest a higher CNDP1 activity in diabetic kidneys.

MATERIAŁY
Numer produktu
Marka
Opis produktu

Sigma-Aldrich
Ethylenediaminetetraacetic acid, purified grade, ≥98.5%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid, BioUltra, anhydrous, ≥99% (titration)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Sodium fluoride, BioReagent, suitable for insect cell culture, ≥99%
Sigma-Aldrich
Triton X-100, laboratory grade
Sigma-Aldrich
Sodium fluoride, 99.99% trace metals basis
Sigma-Aldrich
Sodium fluoride, BioXtra, ≥99%
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.4-100.6%, powder
Sigma-Aldrich
Sodium fluoride, ReagentPlus®, ≥99%
Sigma-Aldrich
Sodium fluoride, ACS reagent, ≥99%
Sigma-Aldrich
Sodium fluoride, puriss., meets analytical specification of Ph. Eur., BP, USP, 98.5-100.5% (calc. to the dried substance)
Sigma-Aldrich
Hydrogen chloride solution, 3 M in cyclopentyl methyl ether (CPME)
SAFC
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium chloride, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Sodium chloride, random crystals, 99.9% trace metals basis
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride solution, BioUltra, Molecular Biology, ~5 M in H2O
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
Hydrocortisone, meets USP testing specifications
Sigma-Aldrich
Hydrocortisone, BioReagent, suitable for cell culture
Sigma-Aldrich
Sodium Fluoride Solution
Sigma-Aldrich
Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid, BioXtra, ≥97 .0%
Sigma-Aldrich
Hydrocortisone, γ-irradiated, powder, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodium chloride, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%