Skip to Content
MilliporeSigma
  • Monitoring matrix metalloproteinase activity at the epidermal-dermal interface by SILAC-iTRAQ-TAILS.

Monitoring matrix metalloproteinase activity at the epidermal-dermal interface by SILAC-iTRAQ-TAILS.

Proteomics (2015-04-15)
Pascal Schlage, Tobias Kockmann, Jayachandran N Kizhakkedathu, Ulrich auf dem Keller
ABSTRACT

Secreted proteases act on interstitial tissue secretomes released from multiple cell types. Thus, substrate proteins might be part of higher molecular complexes constituted by many proteins with diverse and potentially unknown cellular origin. In cell culture, these may be reconstituted by mixing native secretomes from different cell types prior to incubation with a test protease. Although current degradomics techniques could identify novel substrate proteins in these complexes, all information on the cellular origin is lost. To address this limitation, we combined iTRAQ-based terminal amine isotopic labeling of substrates (iTRAQ-TAILS) with SILAC to assign proteins to a specific cell type by MS1- and their cleavage by MS2-based quantification in the same experiment. We demonstrate the power of our newly established workflow by monitoring matrix metalloproteinase (MMP) 10 dependent cleavages in mixtures from light-labeled keratinocyte and heavy-labeled fibroblast secretomes. This analysis correctly assigned extracellular matrix components, such as laminins and collagens, to their respective cellular origins and revealed their processing in an MMP10-dependent manner. Hence, our newly devised degradomics workflow facilitates deeper insight into protease activity in complex intercellular compartments such as the epidermal-dermal interface by integrating multiple modes of quantification with positional proteomics. All MS data have been deposited in the ProteomeXchange with identifier PXD001643 (http://proteomecentral.proteomexchange.org/dataset/PXD001643).

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium pyruvate, anhydrous, free-flowing, Redi-Dri, ReagentPlus®, ≥99%
Sigma-Aldrich
HEPES, anhydrous, free-flowing, Redi-Dri, ≥99.5%
Sigma-Aldrich
Sodium chloride, SAJ first grade, ≥99.0%
Sigma-Aldrich
Acetone, SAJ first grade, ≥99.0%
Sigma-Aldrich
Sodium chloride solution, 1 M
Sigma-Aldrich
Sodium chloride solution, 0.1 M
Sigma-Aldrich
Sodium chloride, JIS special grade, ≥99.5%
Sigma-Aldrich
Acetone, ≥99.5%, suitable for residue analysis
Sigma-Aldrich
Acetone, suitable for residue analysis, ≥99.5%
Sigma-Aldrich
Acetone, JIS special grade, ≥99.5%
Sigma-Aldrich
Acetone, suitable for chromatography, ≥99.8%
Sigma-Aldrich
Acetone, suitable for residue analysis, JIS 5000
Sigma-Aldrich
Acetone, suitable for HPLC
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Acetone, natural, ≥97%
Sigma-Aldrich
Acetone, ≥99%, FCC, FG
Sigma-Aldrich
Acetone, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Sodium pyruvate, SAJ special grade, ≥95.0%
Sigma-Aldrich
Sodium chloride, random crystals, 99.9% trace metals basis
Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
D-Glucose-12C6, 16O6, 99.9 atom % 16O, 99.9 atom % 12C
Sigma-Aldrich
Isopropyl alcohol, ≥99.7%, FCC, FG
Sigma-Aldrich
Sodium chloride solution, BioUltra, Molecular Biology, ~5 M in H2O
Sigma-Aldrich
Sodium chloride, BioUltra, Molecular Biology, ≥99.5% (AT)
Sigma-Aldrich
D-(+)-Glucose, BioUltra, anhydrous, ≥99.5% (sum of enantiomers, HPLC)
Sigma-Aldrich
HEPES, BioUltra, Molecular Biology, ≥99.5% (T)
Sigma-Aldrich
Phenylmethanesulfonyl fluoride, ≥99.0% (T)
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, Molecular Biology, suitable for cell culture