Skip to Content
MilliporeSigma
  • Impact of Precursors Creatine, Creatinine, and Glucose on the Formation of Heterocyclic Aromatic Amines in Grilled Patties of Various Animal Species.

Impact of Precursors Creatine, Creatinine, and Glucose on the Formation of Heterocyclic Aromatic Amines in Grilled Patties of Various Animal Species.

Journal of food science (2015-10-08)
Monika Gibis, Jochen Weiss
ABSTRACT

The impact of precursors such as creatine, creatinine, and glucose on the formation of mutagenic/carcinogenic heterocyclic amines (HAs) were studied in patties of 9 different animal species equally heat treated with a double-plate contact grill. All grilled patties of the various species (veal, beef, pork, lamb, horse, venison, turkey, chicken, ostrich) contained several HAs such as MeIQx (2-amino-3,8-dimethylimidazo[4,5-f] quinoxaline; 0.5-1.4 ng/g), 4,8-DiMeIQx (2-amino-3,4,8-trimethylimidazo[4,5-f] quinoxaline, 0 to 1.3 ng/g), PhIP (2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine, 1.2 to 10.5 ng/g), harman (1-methyl-9H-pyrido[3,4-b] indole; 0.5 to 3.2 ng/g), and/or norharman (9H-pyrido[3,4-b]indole 0.5 to 1.9 ng/g). Residual glycogen (glucose) content varied greatly from 0.07 to 1.46 wt% on a dry matter (DM) basis. Total creatin(in)e content in raw meat (1.36 to 2.0 wt% DM) hardly differed between species, except in turkey and ostrich (1.1 wt% DM). Chicken contained, compared to all other species, very low concentrations of glucose (0.07 wt% DM) and the highest levels of nonprotein nitrogen compounds. The free amino acids lysine (r = 0.77, P < 0.001), tyrosine, phenylalanine, proline, isoleucine, and aspartic acid (r = 0.47-0.56, P < 0.05) showed significant correlation to PhIP in chicken. Also a linear correlation was found to exist between PhIP (r = 0.87, P < 0.001) and MeIQx (r = 0.35, P < 0.01), and the molar ratio of creatin(in)e to glucose, respectively. Harman as co-mutagens was linearly correlated to the concentration of glucose (r = 0.65, P < 0.001). By contrast, norharman was not significant correlated to glucose levels.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Methanol, suitable for NMR (reference standard)
Sigma-Aldrich
Acetonitrile solution, contains 10.0% acetone, 0.05% formic acid, 40.0% 2-propanol
Sigma-Aldrich
Methanol, suitable for HPLC
Sigma-Aldrich
Diethyl ether, suitable for residue analysis, JIS 5000
Sigma-Aldrich
Hydrogen chloride solution, 3 M in cyclopentyl methyl ether (CPME)
Sigma-Aldrich
Methanol, SAJ special grade
Sigma-Aldrich
Triethylamine, SAJ first grade, ≥98.0%
Sigma-Aldrich
Hydrochloric acid solution, 0.05 M
Sigma-Aldrich
Hydrochloric acid, SAJ first grade, 35.0-37.0%
Sigma-Aldrich
Hydrogen chloride – ethanol solution, 0.1 M in ethanol
Sigma-Aldrich
Hydrochloric acid solution, 0.02 M
Sigma-Aldrich
Sodium hydroxide solution, 1 M
Sigma-Aldrich
Sodium hydroxide solution, 0.01 M
Sigma-Aldrich
Hydrochloric acid solution, 0.2 M
Sigma-Aldrich
Hydrochloric acid solution, 0.01 M
Sigma-Aldrich
Sodium hydroxide solution, 7 M
Sigma-Aldrich
Sodium hydroxide, JIS special grade, ≥96.0%
Sigma-Aldrich
Hydrochloric acid solution, 12 M
Sigma-Aldrich
Methanol, JIS special grade, ≥99.8%
Sigma-Aldrich
Picric acid solution
Sigma-Aldrich
Hydrochloric acid, JIS special grade, 35.0-37.0%
Sigma-Aldrich
Hydrochloric acid solution, 6 M
Sigma-Aldrich
Hydrochloric acid solution, 2 M
Sigma-Aldrich
Methanol, SAJ first grade, ≥99.5%
Sigma-Aldrich
Diethyl ether, JIS 1000, ≥99.5%, suitable for residue analysis
Sigma-Aldrich
Sodium hydroxide solution, 0.1 M
Sigma-Aldrich
Hydrochloric acid solution, 0.5 M
Sigma-Aldrich
Sodium hydroxide solution, 4 M
Sigma-Aldrich
Diethyl ether, JIS special grade, ≥99.5%
Sigma-Aldrich
Diethyl ether, SAJ first grade, ≥99.0%