Skip to Content
MilliporeSigma
  • Increased antidepressant sensitivity after prefrontal cortex glucocorticoid receptor gene deletion in mice.

Increased antidepressant sensitivity after prefrontal cortex glucocorticoid receptor gene deletion in mice.

Physiology & behavior (2014-12-03)
Rifat J Hussain, Lauren Jacobson
ABSTRACT

Our laboratory has previously shown that antidepressants regulate glucocorticoid receptor (GR) expression in the prefrontal cortex (PFC). To determine if PFC GR are involved in antidepressant effects on behavior or hypothalamic-pituitary-adrenocortical (HPA) axis activity, we treated floxed GR male mice with saline or 15 or 30 mg/kg/d imipramine after PFC injection of adeno-associated virus 2/9 vectors transducing expression of Cre recombinase, to knock-down GR (PFC-GRKD), or green fluorescent protein (PFC-GFP), to serve as a control. The pattern of virally transduced GR deletion, common to all imipramine treatment groups, included the infralimbic, prelimbic, and medial anterior cingulate cortex at its largest extent, but was confined to the prelimbic and anterior cingulate cortex at its smallest extent. PFC GR knock-down increased behavioral sensitivity to imipramine, with imipramine-treated PFC-GRKD but not PFC-GFP mice exhibiting significant decreases in depression-like immobility during forced swim. PFC GR deletion did not alter general locomotor activity. The 30 mg/kg dose of imipramine increased plasma corticosterone levels immediately after a 5-min forced swim, but PFC GR knock-down had no significant effect on plasma corticosterone under these experimental conditions. We conclude that PFC GR knock-down, likely limited to the medial prelimbic and anterior cingulate cortices, can increase behavioral sensitivity to antidepressants. These findings indicate a novel role for PFC GR in influencing antidepressant response.

MATERIALS
Product Number
Brand
Product Description

Supelco
Glycerin, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Ethylene glycol, Pharmaceutical Secondary Standard; Certified Reference Material
USP
Ethylene glycol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Ethylene glycol, anhydrous, 99.8%
Supelco
Ethylene glycol, analytical standard
Sigma-Aldrich
Ethylene glycol, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
Glycerol solution, 83.5-89.5% (T)
Supelco
Corticosterone, VETRANAL®, analytical standard
Sigma-Aldrich
Corticosterone, ≥98.5% (HPLC)
Sigma-Aldrich
Corticosterone, ≥92%
Sigma-Aldrich
Indomethacin, meets USP testing specifications
Supelco
Ethylene glycol solution, suitable for NMR (reference standard), 80% in DMSO-d6 (99.9 atom % D), NMR tube size 5 mm × 8 in.
Sigma-Aldrich
Ethylene glycol, JIS special grade, ≥99.5%
Sigma-Aldrich
Ethylene glycol, SAJ first grade, ≥99.0%
Sigma-Aldrich
Indomethacin, 98.5-100.5%, meets EP testing specifications
Supelco
Indomethacin, Pharmaceutical Secondary Standard; Certified Reference Material
Indomethacin, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Ethylene glycol, ReagentPlus®, ≥99%
Sigma-Aldrich
Ethylene glycol, spectrophotometric grade, ≥99%
Sigma-Aldrich
Glycerol solution, puriss., meets analytical specification of Ph. Eur., BP, 84-88%
USP
Indomethacin, United States Pharmacopeia (USP) Reference Standard
USP
Glycerin, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Glycerol, tested according to Ph. Eur., anhydrous
Sigma-Aldrich
Glycerol, BioUltra, Molecular Biology, anhydrous, ≥99.5% (GC)
Sigma-Aldrich
Glycerol, FCC, FG
Sigma-Aldrich
Ethylene glycol 5 M solution
Sigma-Aldrich
Glycerol, BioXtra, ≥99% (GC)
Sigma-Aldrich
Glycerol, ≥99.5%
Sigma-Aldrich
Glycerin, meets USP testing specifications
Sigma-Aldrich
Glycerol, Molecular Biology, ≥99.0%