Skip to Content
MilliporeSigma
  • A ligand field series for the 4f-block from experimental and DFT computed Ce(IV/III) electrochemical potentials.

A ligand field series for the 4f-block from experimental and DFT computed Ce(IV/III) electrochemical potentials.

Inorganic chemistry (2015-02-25)
Justin A Bogart, Andrew J Lewis, Michael A Boreen, Heui Beom Lee, Scott A Medling, Patrick J Carroll, Corwin H Booth, Eric J Schelter
ABSTRACT

Understanding of the sensitivity of the reduction potential of cerium(IV) cations to ligand field strength has yet to benefit from systematic variation of the ligand environment. Detailed analyses for a series of seven cerium(IV) tetrakis(pyridyl-nitroxide) compounds and their cerium(III) analogues in varying ligand field strengths are presented. Electrochemical, spectroscopic, and computational results reveal a close correlation of electronic properties with ligand substituents. Together with electrochemical data for reported eight-coordinate compounds, DFT calculations reveal a broad range of the cerium(IV/III) redox potentials correlated to ligand field strengths, establishing a semiempirical, predictive model for the modulation of cerium redox thermodynamics and ligand field strengths. Applications over a variety of scientific disciplines make use of the fundamental redox thermodynamics of cerium. Such applications will benefit from a combined experimental and theoretical approach for assessing redox cycling of cerium compounds.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Diethyl ether, JIS special grade, ≥99.5%
Sigma-Aldrich
Diethyl ether, SAJ first grade, ≥99.0%
Supelco
Tetrahydrofuran, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Diethyl ether, contains 1 ppm BHT as inhibitor, anhydrous, ≥99.7%
Sigma-Aldrich
Tetrahydrofuran, anhydrous, ≥99.9%, inhibitor-free
Supelco
1,2-Dimethoxyethane, analytical standard
Supelco
Tetrahydrofuran, Selectophore, ≥99.5%
Sigma-Aldrich
Tetrahydrofuran, anhydrous, contains 250 ppm BHT as inhibitor, ≥99.9%
Sigma-Aldrich
1,2-Dimethoxyethane, anhydrous, 99.5%, inhibitor-free
Sigma-Aldrich
Tetrahydrofuran, suitable for HPLC, ≥99.9%, inhibitor-free
Supelco
Tetrahydrofuran, analytical standard
Sigma-Aldrich
Diethyl ether, JIS 300, ≥99.5%, suitable for residue analysis
Supelco
Diethyl ether, analytical standard
Sigma-Aldrich
Diethyl ether, suitable for residue analysis, JIS 5000
Sigma-Aldrich
Tetrahydrofuran, JIS special grade, ≥99.5%
Sigma-Aldrich
Tetrahydrofuran, suitable for HPLC, contains no stabilizer
Sigma-Aldrich
Diethyl ether, ≥99.5%
Sigma-Aldrich
Diethyl ether, JIS 1000, ≥99.5%, suitable for residue analysis
Sigma-Aldrich
Tetrahydrofuran, SAJ first grade, ≥99.0%
Sigma-Aldrich
1,2-Dimethoxyethane, SAJ first grade, ≥99.0%
Sigma-Aldrich
Diethyl ether, ACS reagent, ≥98.0%, contains ≤2% ethanol and ≤10ppm BHT as inhibitor
Sigma-Aldrich
1,2-Dimethoxyethane, ReagentPlus®, ≥99%, inhibitor-free
Sigma-Aldrich
Tetrahydrofuran, ACS reagent, ≥99.0%, contains 200-400 ppm BHT as inhibitor
Sigma-Aldrich
Diethyl ether, anhydrous, ACS reagent, ≥99.0%, contains BHT as inhibitor
Sigma-Aldrich
Tetrahydrofuran, ≥99.0%, contains 200-400 ppm BHT as inhibitor, ReagentPlus®
Sigma-Aldrich
Tetrahydrofuran, contains 250 ppm BHT as inhibitor, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99.9%
Sigma-Aldrich
Diethyl ether, reagent grade, ≥98%, contains ≤2% ethanol and ≤10ppm BHT as inhibitor
Sigma-Aldrich
Diethyl ether, contains BHT as inhibitor, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Tetrahydrofuran, contains 200-400 ppm BHT as inhibitor, ACS reagent, ≥99.0%
Sigma-Aldrich
Diethyl ether, ACS reagent, anhydrous, ≥99.0%, contains BHT as inhibitor