Skip to Content
MilliporeSigma
  • Toxin-induced necroptosis is a major mechanism of Staphylococcus aureus lung damage.

Toxin-induced necroptosis is a major mechanism of Staphylococcus aureus lung damage.

PLoS pathogens (2015-04-17)
Kipyegon Kitur, Dane Parker, Pamela Nieto, Danielle S Ahn, Taylor S Cohen, Samuel Chung, Sarah Wachtel, Susan Bueno, Alice Prince
ABSTRACT

Staphylococcus aureus USA300 strains cause a highly inflammatory necrotizing pneumonia. The virulence of this strain has been attributed to its expression of multiple toxins that have diverse targets including ADAM10, NLRP3 and CD11b. We demonstrate that induction of necroptosis through RIP1/RIP3/MLKL signaling is a major consequence of S. aureus toxin production. Cytotoxicity could be prevented by inhibiting either RIP1 or MLKL signaling and S. aureus mutants lacking agr, hla or Hla pore formation, lukAB or psms were deficient in inducing cell death in human and murine immune cells. Toxin-associated pore formation was essential, as cell death was blocked by exogenous K+ or dextran. MLKL inhibition also blocked caspase-1 and IL-1β production, suggesting a link to the inflammasome. Rip3(-/-) mice exhibited significantly improved staphylococcal clearance and retained an alveolar macrophage population with CD200R and CD206 markers in the setting of acute infection, suggesting increased susceptibility of these leukocytes to necroptosis. The importance of this anti-inflammatory signaling was indicated by the correlation between improved outcome and significantly decreased expression of KC, IL-6, TNF, IL-1α and IL-1β in infected mice. These findings indicate that toxin-induced necroptosis is a major cause of lung pathology in S. aureus pneumonia and suggest the possibility of targeting components of this signaling pathway as a therapeutic strategy.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Dimethyl sulfoxide, suitable for HPLC
Sigma-Aldrich
Dimethyl sulfoxide, ≥99.5%
Sigma-Aldrich
Ethylenediaminetetraacetic acid, SAJ special grade, ≥99.0%
Sigma-Aldrich
Dimethyl sulfoxide, JIS special grade, ≥99.0%
Sigma-Aldrich
N-Acetyl-L-cysteine, SAJ special grade, 98.0-102.0%
Sigma-Aldrich
Dimethyl sulfoxide, SAJ first grade, ≥99.0%
Sigma-Aldrich
Dimethyl sulfoxide, ≥99.0%, suitable for absorption spectrum analysis
Sigma-Aldrich
Glycerol, SAJ first grade, ≥98.0%
Sigma-Aldrich
Glycerol, FCC, FG
Sigma-Aldrich
Dimethyl sulfoxide, ≥99.6%, ReagentPlus®
Sigma-Aldrich
MISSION® esiRNA, targeting mouse Mlkl
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, 20% in H2O
Sigma-Aldrich
Dimethyl sulfoxide, anhydrous, ≥99.9%
Sigma-Aldrich
Dimethyl sulfoxide, BioUltra, Molecular Biology, ≥99.5% (GC)
Sigma-Aldrich
Sodium deoxycholate, BioXtra, ≥98.0% (dry matter, NT)
Sigma-Aldrich
Dimethyl sulfoxide, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
Propidium iodide solution
Sigma-Aldrich
2,3-Dimercapto-1-propanol, ≥98% (iodometric)
Sigma-Aldrich
8-Octanoyloxypyrene-1,3,6-trisulfonic acid trisodium salt, suitable for fluorescence, ≥90% (HPCE)
Sigma-Aldrich
Fluorescein, suitable for fluorescence, free acid
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis
Sigma-Aldrich
Glycerol, ≥99.5%
Sigma-Aldrich
Glycerol, Molecular Biology, ≥99.0%
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Sodium deoxycholate, ≥97% (titration)
Sigma-Aldrich
Glycerol, BioXtra, ≥99% (GC)
Sigma-Aldrich
N-Acetyl-L-cysteine, Sigma Grade, ≥99% (TLC), powder
Sigma-Aldrich
Dimethyl sulfoxide, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
Dimethyl sulfoxide, Molecular Biology
Sigma-Aldrich
N-Acetyl-L-cysteine, BioXtra, ≥99% (TLC)