• Home
  • Search Results
  • Polyglutamine- and temperature-dependent conformational rigidity in mutant huntingtin revealed by immunoassays and circular dichroism spectroscopy.

Polyglutamine- and temperature-dependent conformational rigidity in mutant huntingtin revealed by immunoassays and circular dichroism spectroscopy.

PloS one (2014-12-03)
Valentina Fodale, Natalie C Kegulian, Margherita Verani, Cristina Cariulo, Lucia Azzollini, Lara Petricca, Manuel Daldin, Roberto Boggio, Alessandro Padova, Rainer Kuhn, Robert Pacifici, Douglas Macdonald, Ryan C Schoenfeld, Hyunsun Park, J Mario Isas, Ralf Langen, Andreas Weiss, Andrea Caricasole
ABSTRACT

In Huntington's disease, expansion of a CAG triplet repeat occurs in exon 1 of the huntingtin gene (HTT), resulting in a protein bearing>35 polyglutamine residues whose N-terminal fragments display a high propensity to misfold and aggregate. Recent data demonstrate that polyglutamine expansion results in conformational changes in the huntingtin protein (HTT), which likely influence its biological and biophysical properties. Developing assays to characterize and measure these conformational changes in isolated proteins and biological samples would advance the testing of novel therapeutic approaches aimed at correcting mutant HTT misfolding. Time-resolved Förster energy transfer (TR-FRET)-based assays represent high-throughput, homogeneous, sensitive immunoassays widely employed for the quantification of proteins of interest. TR-FRET is extremely sensitive to small distances and can therefore provide conformational information based on detection of exposure and relative position of epitopes present on the target protein as recognized by selective antibodies. We have previously reported TR-FRET assays to quantify HTT proteins based on the use of antibodies specific for different amino-terminal HTT epitopes. Here, we investigate the possibility of interrogating HTT protein conformation using these assays. By performing TR-FRET measurements on the same samples (purified recombinant proteins or lysates from cells expressing HTT fragments or full length protein) at different temperatures, we have discovered a temperature-dependent, reversible, polyglutamine-dependent conformational change of wild type and expanded mutant HTT proteins. Circular dichroism spectroscopy confirms the temperature and polyglutamine-dependent change in HTT structure, revealing an effect of polyglutamine length and of temperature on the alpha-helical content of the protein. The temperature- and polyglutamine-dependent effects observed with TR-FRET on HTT proteins represent a simple, scalable, quantitative and sensitive assay to identify genetic and pharmacological modulators of mutant HTT conformation, and potentially to assess the relevance of conformational changes during onset and progression of Huntington's disease.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Glycerol, for molecular biology, ≥99.0%
Sigma-Aldrich
Sodium chloride, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Sodium dodecyl sulfate, BioReagent, suitable for electrophoresis, for molecular biology, ≥98.5% (GC)
Sigma-Aldrich
Glycerol, ≥99.5%
Sigma-Aldrich
Sodium dodecyl sulfate, ACS reagent, ≥99.0%
Sigma-Aldrich
Urea, ACS reagent, 99.0-100.5%
Sigma-Aldrich
Sodium chloride, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
SAFC
BIS-TRIS
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, BioUltra, for molecular biology, pH 8.0, ~0.5 M in H2O
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
Urea, powder, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Glycerol, ACS reagent, ≥99.5%
Sigma-Aldrich
Sodium dodecyl sulfate, ReagentPlus®, ≥98.5% (GC)
Sigma-Aldrich
Sodium chloride, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Glycerol, ReagentPlus®, ≥99.0% (GC)
Sigma-Aldrich
Sodium phosphate, 96%
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, BioUltra, ≥99% (titration)
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, for molecular biology, 10% in H2O
Sigma-Aldrich
Glycerol, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for electrophoresis, ≥99% (GC)
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
BIS-TRIS, ≥98.0% (titration)
Sigma-Aldrich
Sodium dodecyl sulfate, ≥99.0% (GC), dust-free pellets
Sigma-Aldrich
Sodium dodecyl sulfate, BioUltra, for molecular biology, ≥99.0% (GC)
SAFC
Sodium chloride solution, 5 M
Sigma-Aldrich
Bromophenol Blue
Sigma-Aldrich
Urea, ReagentPlus®, ≥99.5%, pellets
Sigma-Aldrich
Bromophenol Blue, ACS reagent
Supelco
Glycerin, Pharmaceutical Secondary Standard; Certified Reference Material