Przejdź do zawartości
Merck

Non-invasive high throughput approach for protein hydrophobicity determination based on surface tension.

Biotechnology and bioengineering (2015-06-16)
Sven Amrhein, Katharina Christin Bauer, Lara Galm, Jürgen Hubbuch
ABSTRAKT

The surface hydrophobicity of a protein is an important factor for its interactions in solution and thus the outcome of its production process. Yet most of the methods are not able to evaluate the influence of these hydrophobic interactions under natural conditions. In the present work we have established a high resolution stalagmometric method for surface tension determination on a liquid handling station, which can cope with accuracy as well as high throughput requirements. Surface tensions could be derived with a low sample consumption (800 μL) and a high reproducibility (<0.1‰ for water) within a reasonable time (3.5 min per sample). This method was used as a non-invasive HTP compatible approach to determine surface tensions of protein solutions dependent on protein content. The protein influence on the solutions' surface tension was correlated to the hydrophobicity of lysozyme, human lysozyme, BSA, and α-lactalbumin. Differences in proteins' hydrophobic character depending on pH and species could be resolved. Within this work we have developed a pH dependent hydrophobicity ranking, which was found to be in good agreement with literature. For the studied pH range of 3-9 lysozyme from chicken egg white was identified to be the most hydrophilic. α-lactalbumin at pH 3 exhibited the most pronounced hydrophobic character. The stalagmometric method occurred to outclass the widely used spectrophotometric method with bromophenol blue sodium salt as it gave reasonable results without restrictions on pH and protein species.

MATERIAŁY
Numer produktu
Marka
Opis produktu

Sigma-Aldrich
Citric acid, ACS reagent, ≥99.5%
Sigma-Aldrich
Sodium hydroxide-16O solution, 20 wt. % in H216O, 99.9 atom % 16O
Sigma-Aldrich
2-Hydroxybutyric acid sodium salt, 97%
Sigma-Aldrich
Ethylene glycol 5 M solution
Sigma-Aldrich
5α-Androstan-17β-ol-3-one, purum, ≥99.0% (TLC)
Sigma-Aldrich
Citric acid, ≥99.5%, FCC, FG
Sigma-Aldrich
Citric acid, 99%
Sigma-Aldrich
5α-Androstan-17β-ol-3-one, ≥97.5%
Sigma-Aldrich
Citric acid, anhydrous, suitable for cell culture, suitable for plant cell culture
Sigma-Aldrich
Citric acid, BioUltra, anhydrous, ≥99.5% (T)
Sigma-Aldrich
Citric acid, anhydrous, free-flowing, Redi-Dri, ACS reagent, ≥99.5%
Sigma-Aldrich
Citric acid, meets analytical specification of Ph. Eur., BP, USP, E330, anhydrous, 99.5-100.5% (based on anhydrous substance)
Sigma-Aldrich
Hydrogen chloride solution, 3 M in cyclopentyl methyl ether (CPME)
SAFC
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium chloride, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Sigma-Aldrich
Acetic acid-12C2, 99.9 atom % 12C
Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Sodium chloride, random crystals, 99.9% trace metals basis
Supelco
Ethylene glycol solution, suitable for NMR (reference standard), 80% in DMSO-d6 (99.9 atom % D), NMR tube size 5 mm × 8 in.
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Ethylene glycol, anhydrous, 99.8%
Sigma-Aldrich
Citrate Concentrated Solution, BioUltra, Molecular Biology, 1 M in H2O
Sigma-Aldrich
Acetic acid, suitable for luminescence, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
Sodium acetate solution, BioUltra, Molecular Biology, ~3 M in H2O
Sigma-Aldrich
Sodium acetate, anhydrous, BioUltra, suitable for luminescence, Molecular Biology, ≥99.0% (NT)
Sigma-Aldrich
Sodium chloride, BioUltra, Molecular Biology, ≥99.5% (AT)
Sigma-Aldrich
Sodium Acetate Anhydrous, >99%, FG
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
Acetic acid, natural, ≥99.5%, FG