Skip to Content
MilliporeSigma
  • Na(+)/H (+) exchanger isoform 1 induced osteopontin expression in cardiomyocytes involves NFAT3/Gata4.

Na(+)/H (+) exchanger isoform 1 induced osteopontin expression in cardiomyocytes involves NFAT3/Gata4.

Molecular and cellular biochemistry (2015-03-12)
Mohamed Mlih, Nabeel Abdulrahman, Alain-Pierre Gadeau, Iman A Mohamed, Maiy Jaballah, Fatima Mraiche
ABSTRACT

Osteopontin (OPN), a multifunctional glycophosphoprotein, has been reported to contribute to the development and progression of cardiac remodeling and hypertrophy. Cardiac-specific OPN knockout mice were protected against hypertrophy and fibrosis mediated by Ang II. Recently, transgenic mice expressing the active form of the Na(+)/H(+) exchanger isoform 1 (NHE1) developed spontaneous hypertrophy in association with elevated levels of OPN. The mechanism by which active NHE1 induces OPN expression and contributes to the hypertrophic response remains unclear. To validate whether expression of the active form of NHE1 induces OPN, cardiomyocytes were stimulated with Ang II, a known inducer of both OPN and NHE1. Ang II induced hypertrophy and increased OPN protein expression (151.6 ± 28.19 %, P < 0.01) and NHE1 activity in H9c2 cardiomyoblasts. Ang II-induced hypertrophy and OPN protein expression were regressed in the presence of an NHE1 inhibitor, EMD 87580, or a calcineurin inhibitor, FK506. In addition, our results indicated that activation of NHE1-induced NFAT3 translocation into the nucleus and a significant activation of the transcription factor Gata4 (NHE1: 149 ± 28 % of control, P < 0.05). NHE1-induced activation of Gata4 was inhibited by FK506. In summary, our results suggest that activation of NHE1 induces hypertrophy through the activation of NFAT3/Gata4 and OPN expression.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
HEPES, BioXtra, pH 5.0-6.5 (1 M in H2O), ≥99.5% (titration)
Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
HEPES, BioXtra, suitable for mouse embryo cell culture, ≥99.5% (titration)
Sigma-Aldrich
HEPES, BioUltra, for molecular biology, ≥99.5% (T)
SAFC
HEPES
Sigma-Aldrich
Magnesium chloride solution, 0.1 M
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
SAFC
HEPES
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride solution, 0.85%
Supelco
DL-Dithiothreitol solution, 1 M in H2O
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium chloride solution, 1 M
Sigma-Aldrich
HEPES, anhydrous, free-flowing, Redi-Dri, ≥99.5%
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodium chloride, tablet
Sigma-Aldrich
Sodium chloride, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
DL-Dithiothreitol solution, BioUltra, for molecular biology, ~1 M in H2O
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Magnesium chloride solution, for molecular biology, 1.00 M±0.01 M
Sigma-Aldrich
Sodium chloride, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Magnesium chloride solution, BioUltra, for molecular biology, 2 M in H2O
Sigma-Aldrich
Sodium chloride solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Sodium chloride, random crystals, optical grade, 99.9% trace metals basis
Sigma-Aldrich
Magnesium chloride solution, PCR Reagent, 25 mM MgCI2 solution for PCR
Sigma-Aldrich
Sodium chloride, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
Magnesium chloride solution, BioUltra, for molecular biology, ~0.025 M in H2O
Sigma-Aldrich
Magnesium chloride solution, BioUltra, for molecular biology, ~1 M in H2O
Sigma-Aldrich
Sodium chloride, BioXtra, ≥99.5% (AT)